# **Experimental Studies and Lunar Simulant Requirements**

**Gary Lofgren** 

Lunar Curator Planetary Scientist

www-curator.jsc.nasa.gov

Astromaterials Research and Exploration Science

**NASA Johnson Space Center** 

## **Premise**

- Better understand the sintering, melting, and crystallization behavior of lunar materials for construction
- Unique properties regolith that affect these behaviors
- Experimental studies of lunar regolith and basalt can provide some insight
- Additional studies to determine the sintering behavior
- Can these studies be done with simulants or are lunar materials necessary?

## **Definitions**

### **Sintering**

- Temperatures between the glass transition and solidus, no melting
- Limited variation is physical properties with porosity being one of the important ones
- Physical properties vary with time and temperature of sintering, grain size, composition, and physical state of the soil

### Melting

- Temperatures above the solidus
- Some melting can reduce porosity and increase strength

## **Definitions**

### Crystallization

- Can produce a custom product.
- Complex and variable process can produce a variety of physical properties
- Tailoring the physical properties to desired uses requires extensive experimentation
- Tensile strength, surface toughness, resistance to fracturing, and insulation properties could all be controlled

## **Previous Experimental Studies**

- A dynamic crystallization study of lunar soil 15101 demonstrated melting and crystallization properties
- Showed how to vary textures and obtain final products with differing physical properties
- Variations in melting temperatures and time followed by crystallization at different cooling rates
- Oxygen fugacity is IW-1 log unit, Fe<sup>o</sup> stable. Atm controlled with appropriate ratio of CO/CO<sub>2</sub>
- This was not a study of physical properties and none were measured

|                  | 15101 <sup>1</sup> | 14259 <sup>2</sup> | 14310 <sup>3</sup> | POIKILITIC ROCKS4 |
|------------------|--------------------|--------------------|--------------------|-------------------|
| S102             | 46.21              | 48.16              | 48.82              | 44.7 - 47.0       |
| T102             | 1.31               | 1.73               | 1.16               | 0.7 - 1.7         |
| AL203            | 17.56              | 17.60              | 20.50              | 17.2 - 22.9       |
| CR203            | 0.28               | 0.26               | 0.07               | NOT REPORTED      |
| FE0              | 11.61              | 10.41              | 7.69               | 7.1 - 10.5        |
| MnO              | 0.16               | 0.14               | N.D.               | 0.07 - 0.13       |
| MgO              | 10.32              | 9.26               | 7.78               | 9.9 - 13.2        |
| CAO              | 11.63              | 11.25              | 12.51              | 10.4 - 13.3       |
| NaO <sub>2</sub> | 0.40               | 0.56               | 0.60               | 0.3 - 0.6         |
| K <sub>2</sub> 0 | 0.18               | 0.61               | 0.39               | 0.1 - 0.4         |
| P205             | 0.16               | 0.53               | N.D.               | 0.2 - 0.5         |
| S                | 0.07               | N.D.               | N.D.               | NOT REPORTED      |
| TOTAL            | 99.89              | 100.51             | 99.51              |                   |

<sup>2</sup> AVERAGE OF 4 XRF ANALYSES 3ROSE ET AL (1972) 3SYNTHETIC 14310, LOFGREN (1977) 4SIMONDS ET AL. (1973)

# Average Lunar Soil compositions from the Bible

|                           | 11   | 12   | 14   | 15 <b>a</b> | 15b   | 15c   | 15    |
|---------------------------|------|------|------|-------------|-------|-------|-------|
| SiO₂                      | 42.2 | 46.3 | 48.1 | 46.7        | 46.6  | 47.1  | 46.8  |
| $TiO_2$                   | 7.8  | 3.0  | 1.7  | 1.7         | 1.4   | 1.0   | 1.4   |
| $Al_2O_3$                 | 13.6 | 12.9 | 17.4 | 1.3,2       | 17.1  | 13.4  | 14.6  |
| $Cr_2 \circlearrowleft_3$ | 0.30 | 0.34 | 0.23 | 0.44        | 0.27  | 0.37  | 0.36  |
| FeO                       | 15.3 | 15.1 | 10.4 | 16.3        | 11.7  | 14.9  | 14.3  |
| MnO                       | 0.20 | 0.22 | 0.14 | 0.21        | 0.16  | 0.19  | 0.19  |
| MgO                       | 7.8  | 9.3  | 9.4  | 10.9        | 10.5  | 13.0  | 11.5  |
| CaO                       | 11.9 | 10.7 | 10.7 | 10.4        | 11.6  | 10.3  | 10.8  |
| Na <sub>2</sub> O         | 0.47 | 0.54 | 0.70 | 0.38        | 0.45  | 0.33  | 0.39  |
| K <sub>2</sub> O          | 0.16 | 0.31 | 0.55 | 0.23        | 0.20  | 0.19  | 0.21  |
| $P_2O_3$                  | 0.05 | 0.4  | 0.51 | 0.16        | 0.19  | 0.19  | 0.18  |
| S                         | 0.12 |      |      | 0.07        | 0.08  | 0.04  | 0.06  |
| Total                     | 99.9 | 99.6 | 99.8 | 100.6       | 100.2 | 100.9 | 100.8 |

# Average Lunar Soil compositions from the Bible

|                                | 16a   | 16b   | 16c   | 16    | 17a   | l7b   | 17c   | 17d  | 17    |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|------|-------|
| SiO <sub>2</sub>               | 45.0  | 44.9  | 45.1  | 45.0  | 40.6  | 45. l | 43.5  | 43.7 | 43.2  |
| TiO <sub>2</sub>               | 0.56  | 0.47  | 0.60  | 0.54  | 8.4   | 1.7   | 3.4   | 3.5  | 4.2   |
| $Al_2O_3$                      | 27.1  | 28.0  | 26.8  | 27.3  | 12.0  | 20.7  | 18.0  | 17.4 | 17.1  |
| Cr <sub>2</sub> O <sub>3</sub> | 0.34  | 0.54  | 0.11  | 0.33  | 0.45  | 0.25  | 0.28  | 0.32 | 0.33  |
| FeO                            | 5.2   | 4.7   | 5.4   | 5.1   | 16.7  | 8.8   | 10.9  | 12.2 | 12.2  |
| MnO                            | 0.41  | 0.27  | 0.22  | 0.30  | 0.23  | 0.12  | 0.16  | 0.16 | 0.17  |
| MgO                            | 5.8   | 5.6   | 5.7   | 5.7   | 9.9   | 9.8   | 10.7  | 11.1 | 10.4  |
| CaO                            | 15.8  | 15.7  | 15.6  | 15.7  | 10.9  | 12.8  | 12.12 | 11.3 | 11.8  |
| Na <sub>2</sub> O              | 0.46  | 0.50  | 0.43  | 0.46  | 0.35  | 0.42  | 0.42  | 0.42 | 0.40  |
| K <sub>2</sub> O               | 0.13  | 0.23  | 0.14  | 0.17  | 0.16  | 0.16  | 0.12  | 0.09 | 0.13  |
| $P_2O_3$                       | 0.13  | 0.10  | 0.10  | 0.11  | 0.14  | 0.15  | 0.09  | 0.08 | 0.12  |
| S                              | 0.07  | 0.05  | 0.09  | 0.07  | 0.12  | 0.09  | 0.07  | 0.09 | 0.09  |
| Total                          | 100.9 | 100.9 | 100.4 | 100.8 | 100.1 | 100.0 | 99.8  | 99.9 | 100.5 |





## **Melting Textures**





Melt 1230°C for 1 hr

Melt 1230°C for 16 hrs





## **Crystallization Textures**



Melt1280°C 3 hrs Cool 2°C/hr



Melt1270°C 1 hr Cool 2°C/hr





# **Crystallization Textures**



Cool 2°C/hr



# Crystallization Textures

**Melt 1240°C** 

1mm



10 min 9°C/hr







# Crystallization Textures

Melt 1230°C

1mm









# The Best Lunar Regolith for Processing

- Regolith with the lowest solidus temperatures
- Regolith with the largest fraction of finer grain sizes
- Regolith with high glass content, either agglutinates or spheres and fragments
- Glass content is not as important for melting and crystallization processes

## Important Regolith Properties

- Bulk composition--controls the solidus temperatures
- Glass and agglutinate content—ease of sintering
- The unique grain size distribution, with emphasis on mature soils—ease of sintering and melting
- Experimental studies require a faithful simulant, but not large quantities
- Some experiments could be done with small amounts of lunar regolith
- Extensive physical testing requires large a amount of simulant

# **Energy Requirements**

- The energy to produce melting and crystallization is significant
- Use solar collectors with stored power with a conventional furnace or a microwaves
- Another possible source is direct solar power such as a solar furnace that uses focused sunlight

## **Sources of Information**

- Basalt has been used extensively as the raw material for casting ceramic products in Eastern Europe in the early 20th century
- This industry provides insight into sintering and crystallization histories necessary to produce desired physical properties
- The US ceramic industry has extensive experience with sintering of silicate materials